From our perspective, “dwarf” might not be the best word for our sun, either. At about 864,000 miles (1.4 million kilometers) wide, the sun is 109 times wider than Earth, and it accounts for more than 99.8 percent of the solar system's total mass. If it was a hollow ball, more than a million Earths could fit inside it. But the sun isn't hollow: It's filled with scorching gases and soups of electrically charged particles called plasma. The sun's surface temperature is about 10,000 degrees Fahrenheit (5,500 degrees Celsius), and it's 27 million degrees Fahrenheit (15.5 million Celsius) at the core.
Deep in the sun's core, nuclear fusion converts hydrogen to helium, which generates energy. Particles of light called photons carry this energy through a spherical shell called the radiative zone to the top layer of the solar interior, the convection zone. There, hot plasmas rise and fall like the ooze in a lava lamp, which transfers energy to the sun's surface, called the photosphere
Solar wind and flares
In addition to light, the sun radiates heat and a steady stream of charged particles known as the solar wind. The wind blows about 280 miles (450 kilometers) a second throughout the solar system, extending the sun's magnetic field out more than 10 billion miles. Beyond that distance, the solar wind gives way to the colder, dense material that drifts in between stars, forming a boundary called the heliopause. So far, just two spacecraft—Voyager 1 and Voyager 2—have crossed this cosmic threshold, which defines the start of interstellar space.
Every so often, a patch of particles will burst from the sun in a solar flare, which can disrupt satellite communications and knock out power on Earth. Flares usually stem from the activity of sunspots, cool regions of the photosphere that form and dissipate as the sun's internal magnetic field shifts. Solar flares and sunspots obey a regular cycle, rising and falling in number every 11 years as the poles of the sun's magnetic field flip back and forth.
Ads by Eonads
Sometimes, the sun will also launch huge bubbles of magnetized particles from its corona, in events called coronal mass ejections (CMEs). Some CMEs can grow as large as the sun itself and fling as much as a billion tons of material in a given direction. As they rush from the sun, CMEs can send huge shockwaves through the solar wind. If a CME collided with Earth, its particles could pack enough power to fry electronics in orbit and on Earth's surface
Ads by Eonads
0 Comments